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Abstract 

We cons ider  t h e  problem of es t imat ing  s p a t i a l l y  varying Coef f i c i en t s  of 

pa r t i a l  d i f f e r e n t i a l  equat ions  from observa t ion  of t he  s o l u t i o n  and of t he  

r i g h t  hand s i d e  of t h e  equation. W e  assume t h a t  t h e  observa t ions  are 

d i s t r i b u t e d  i n  t h e  domain and t h a t  enough observa t ions  are given. A method of 

d i s c r e t i z a t i o n  and an e f f i c i e n t  mu l t ig r id  method f o r  so lv ing  the  r e s u l t i n g  

d i s c r e t e  systems are descr ibed.  Numerical r e s u l t s  are presented f o r  

e s t ima t ion  of c o e f f i c i e n t s  i n  an e l l i p t i c  and a pa rabo l i c  par t ia l  d i f f e r e n t i a l  

equat ion .  
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1. In t roduc t ion  

This  paper d i s c u s s e s  the  problem of e s t ima t ing  s p a t i a l l y  varying 

c o e f f i c i e n t s  of d i f f e r e n t i a l  equations using observa t ions  of t h e  s o l u t i o n  and 

t h e  r i g h t  hand s i d e  of t h e  equation. We are r e s t r i c t i n g  t h e  d i scuss ion  to 

d i s t r i b u t e d  observa t ions .  

A common e s t i m a t i o n  procedure is t o  t r y  t o  f i n d  parameters such t h a t  by 

so lv ing  t h e  equat ion ,  t he  s o l u t i o n  is as c l o s e  as p o s s i b l e  ( i n  some norm) t o  

t h e  observa t ions  [ l ]  ("output l e a s t  squares").  Another approach is t o  look a t  

t h e  equat ion  as an equat ion  f o r  the  parameters [ 2 ] .  The approach w e  are 

d i scuss ing  here  is c l o s e r  t o  t h e  second one: we seek a s o l u t i o n  ( f o r  t he  

c o e f f i c i e n t s )  i n  t h e  least  squares sense.  This  approach and t h e  f i r s t  

approach are two s p e c i a l  ca ses  of another  approach which estimates t h e  

parameters by minimizing a weighted sum of t h e  e r r o r  between observed and 

computed s o l u t i o n s  wi th  the  res idua l  of t h e  equat ion.  That is ,  given  t h e  

equat ion  

L (g)V = f 

one i d e n t i f i e s  g by minimizing over (g ,  V ) E A  the  f u n c t i o n a l  

* 2  J (v ,g)  = nv - v*n2 + nL (g>v - f II 

* *  where V , f  are t h e  observed q u a n t i t i e s ,  and A is a set of admiss ib le  p a i r s  of 

func t ions .  

L e t  ("vu), "gu)) be t h e  minimum of J. Then u + -, ( v ( u ) ,  ;(a)) 

converge t o  t h e  s o l u t i o n  of t h e  "output least squares" so lu t ion .  I n  t h e  

case u + 0, ( o ( u ) ,  "gu)) converge t o  t h e  s o l u t i o n  of t h e  minimizat ion 

problem discussed  i n  t h i s  paper ("equation e r r o r  approach"). 
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The disadvantage of using the  "equat ion e r ro r "  approach is  t h a t  one can 

treat  only problems i n  which measurements are d i s t r i b u t e d  i n  t h e  domain and i n  

which enough measurements are a v a i l a b l e .  Also, t h i s  case may be more 

s e n s i t i v e  t o  noisy d a t a  than t h e  "output least squares" approach because one 

a p p l i e s  L(g) t o  V , and i f  L(g) is a d i f f e r e n t i a l  ope ra to r ,  a l a r g e  e r r o r  may 

be in t roduced  even f o r  a small amount of no i se  i n  V . 
* 

* 

Sec t ion  2 desc r ibes  the  mathematical  formula t ion  of t h e  problem and some 

b a s i c  r u l e s  for d i s c r e t i z a t i o n .  A m u l t i g r i d  procedure f o r  so lv ing  the  

r e s u l t i n g  equations is  presented  i n  Sec t ion  3.  I n  Sec t ion  4 ,  we p re sen t  some 

numerical  computations i n  which we estimate c o e f f i c i e n t s  of an e l l i p t i c  and 

pa rabo l i c  equation. The e l l i p t i c  case appears i n  problems involv ing  l a r g e  

space  s t r u c t u r e s  [ l ] ,  and t h e  pa rabo l i c  case arises i n  o i l  exp lo ra t ion  and 

recovery [ 1 1 .  

2. Formulation of t h e  Problem and D i s c r e t i z a t i o n  Method 

L e t  L(g) be a d i f f e r e n t i a l  ope ra to r  depending on a set of c o e f f i c i e n t s  

-- g(x)  = (gl(z), ...,g g(z)). We wish t o  estimate E from t h e  observed s o l u t i o n  

V(x) - and a r igh t  hand s i d e  of t h e  equat ion  

x E: n. 

The problem i s  gene ra l ly  i l l -posed .  I n  o rde r  t h a t  - g(x)  w i l l  be 

i d e n t i f i a b l e ,  V(x) - must s a t i s f y  some necessary condi t ions .  (See [21 f o r  

example. ) W e  assume throughout t h e  paper t h a t  t he  observa t ions  V(x), - f (5) 

are such t h a t :  

! 
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observations are distributed in s1 

V(X), f(2) are such that - g(x) is identifiable 

g(x) depend continuously on V(x), - f(2). 
- -  

- -  

In this paper, we are not discussing conditions on L(g), V(x), - f(5) that 

imply (P2) and (P3). Basically, these assumptions imply that the 

identification problem is well posed. In a companion paper [5], we discuss 

such conditions for the example given in section 4.1. Our approach for 

estimating g(x) - will be to look for - -  g(x) such that equation (2.1) will be 

satisfied in a least squares sense, i.e., 

* " 2  min li L(g,)V - f 1 i 2  

* *  
where V , f are given in at discrete points, and A is a class of admissible 

parameters. The first step is t o  construct an interpolant V that is 

defined everywhere in s1. This will define a problem on the continuous 

level. Next we consider the question of discretization, 

N* 

h Let the discrete domain be Qh, on which V, , f,h are given (by 

interpolation from the measurements). Let A h ,  AH be spaces of discrete 

functions defined on the discrete domains Qh, QH respectively, where 

QH E Oh. A H  

A H  

'will be the set of admissible parameters. The dimension of 

may not be the same as that of Ah. The discretization of (2.1) is then 
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h H  where L (g) is a matrix approximation to L(g). The identification 

procedure then takes the form 

( 2 . 4 )  
min n L h H  (g v , ~  - f,h I; 
- gHEA 

The method one uses for discretization is a crucial one for the quality of the 

estimated quantities. We suggest the following rule: 

Discretization Rule: 

number of equations in ( 2 . 3 ) .  

The number of parameters in - gH should be less than the 

The above rule is in accordance with results by others (for example [ 6 ] ) .  

This rule seems to guarantee that no spurious oscillations are developed in 

H 
g . In practice, we take gH 

h grid on which V, , fkh are defined. 

to be defined on a grid twice as coarse as the - 

h Let the matrix B(V ) be defined by 

h H  h ( 2 . 5 )  B(Vh) gH = L ( g  ) V . 

h H  h Note that, although L (g ) is a square matrix, B(V ) is a rectangular one 

since - g involves less parameters than V With the above definition of 

B(Vh) , 

H h 

our minimization problem takes the form 

min 
gHEAH 

IIB (V,h)gH - f,h n 2  

This leads, in the case of linear L, to the following system of equations 
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(2.7) 

We next d e s c r i b e  an e f f i c i e n t  a lgor i thm f o r  so lv ing  t h e  d i s c r e t e  s y s t e m  

(2.7). 

3. Mult igr id  Procedure 

The main element of a good mul t igr id  procedure is a r e l a x a t i o n  scheme. 

We start  by desc r ib ing  t h i s  pa r t .  

h T  Relaxat ion.  S ince  [ B  (V,)] B (Vkh) is symmetric p o s i t i v e  d e f i n i t e ,  i t  

seems t h a t  Gauss-Seidel r e l a x a t i o n  w i l l  be appropr ia te .  However, f o r  t h i s  we 

l i e  have to  compute [B (V,)] B(V,h). For gene ra l  problems where g , V, 

on d i f f e r e n t  g r i d s ,  t h i s  may be too involved. A s  a n  a l t e r n a t i v e ,  w e  sugges t  

Kaczmarz r e l a x a t i o n  f o r  

h T  

From a theorem of Tanabe [ 3 ] ,  t h i s  r e l a x a t i o n  converges t o  the  least squares  

s o l u t i o n  p lus  t h e  p r o j e c t i o n  of t h e  i n i t i a l  approximation onto t h e  k e r n e l  of 

[B (V, ) ]  . Consider ing t h e  t a sk  of programming t h e  algori thm, i t  is much 

s i m p l e r  t o  t a k e  t h i s  rou te  over t h e  one of computing 

h T  

h T  [B (V, > ]  B ( V k h ) .  

The i - t h  s t e p  i n  Kaczmarz r e l axa t ion  is given by: 

For j = 1, ..., n do: 

h H  

2 
(f - B(V, )g 1 i h gr + g .  H + 6i  bij where B(v,) = (b i j )  and 6i= . 

J I b i j l  
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We now come to the description of a multigrid cycle. We begin by 

describing a two-grid cycle. 

Two-grid Cycle 

Suppose we are given two grids Qh, Q2h where Q2h c Slh. Let - 

A:, Afh (i=1,2) be spaces of grid functions defined on Qh, S12h 
h respectively. Assume the Q -grid equations are 

h 
be an interpolation operator from A 2 h  to Ai, h and Ih 2h = (I2h) h *  . 

Given an approximate solution g to the above equation, a two-grid 

i Let 12h 

-h 

cycle for improving it consists of performing (A)  - (D): 

(A) Relax the equation Bhgh = fh v times, starting with 1 
"gh yielding -h g . 

(B) Solve (approximately) the coarse grid equation 

B2hg2h = 12t (fh - B h-h g ); B2h = Ih 2h B h 12h, h 

denote by -2h g the (approximate) solution. 

(C) Perform the correction 
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-h times, s t a r t i n g  wi th  g 2 (D) Relax t h e  equa t ion  Bhgh = fh v 

-h y i e l d i n g  g . 

Note t h a t  B2h is an ope ra to r  from A t h  t o  A2 2h and t h e  d e f i n i t i o n  given 

f o r  i t  is  only one p o s s i b i l i t y .  

I n  o rde r  t o  o b t a i n  f u l l  e f f i c i ency  of such an algori thm one s o l v e s  t h e  

coa r se  g r i d  equat ions i n  s t e p  (B) by a similar a lg ro i thm us ing  a s t i l l  c o a r s e r  

g r i d .  Applying t h i s  i dea  r ecu r s ive ly  we g e t  t h e  b a s i c  mul t ig r id  cyc le  which 

is  def ined next.  

Mul t ig r id  Cycle 

Given a sequence of d i s c r e t i z a t i o n s  wi th  mesh s i z e s  h l >  h2 > ... hm, on 

and i2 c_ 52 . L e t  t he  hk-grid equa t ion  k-1 k k g r i d s  , where hk = 2hk + 

be 

= fk; f k k  € A 2 ,  g k k  €A1,  ( 3 . 3 )  B g  

Bk+l (k < m) and Ai k ( i = 1 , 2 )  are spaces of where Bk approximates 

f u n c t i o n s  def ined on t h e  hk-grid. L e t  k be an i n t e r p o l a t i o n  o p e r a t o r  Ik- 1 
k k- 1 
i i '  k-l be a r e s t r i c t i o n  ope ra to r  from A t o  A t o  A,, and Ik k k- 1 from Ai 

The a lgo r i thm ' for  improving a given approximate s o l u t i o n  ik t o  (3.3) is 

denoted by 

( 3 . 4 )  ik t MG (k, ik, fk> 

and is defined r e c u r s i v e l y  as follows: 



-8- 

(1) If k = 1, solve ( 3 . 3 )  by several relaxations otherwise do steps (A) - 

(D) 

( A )  Perform w relaxation sweeps on ( 3 . 3 ) ,  resulting in a new approximation 1 
-k 
g -  

(B) Starting with “pk-’=0, perform y times the following cycle 

“gk-’ + MG(k-l,g -k-1 ,Ik k-1 (fk - Bkik)), 

(C) Calculate 

(D) Perform w 2  additional relaxation steps on ( 3 . 3 )  starting with gk and 

yielding the final ik of ( 3 . 4 ) .  

The cycle with y = 1 is called V(v w )-cycle and the one with y = 2 1 ’  2 

is called W(wl ,v2) .  

F u l l  Multigrid Algorithm (FMG) 

In order t o  obtain full efficiency, it is better to start from a good 

initial guess. This can be obtained by solving a similar problem on a coarser 

level. Applying the idea recursively, we get the following algorithm which is 

called full multigrid algorithm and is denoted by N-FMG. 

1. Solve (3.3) for k=l using several relaxations. 



2. k = k+l 

-k k -k-1 g = l r  k-1 , nk is an interpolation operator. k- 1 

3.  Perform the cycle 
2k + MG (k, ik, fk) 

N times. 

4. If k < m, go to 2; otherwise, stop. 

4. Numerical EXamDhS 

In this section, we demonstrate the effectiveness of the method 

described. Results are given for two identification problems. In all cases 

the grids are finite and the spaces defined them are of grid functions (finite 

dimensional) , with the E2-norm. 

Determine g(x,y) from observations of V(x,y), f(x,y) which satisfy 

L(g) V = f in 52. 
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D i s c r e t i z a t i o n  V ,  f were d i s c r e t i z e d  on a uniform mesh 

Qh = ( ( i h ,  j h ) ,  0 < i, j < N) N e  h = l .  

g w a s  d i s c r e t i z e d  on a mesh QH, wi th  H = 2h. The d i s c r e t e  equat ion  i s  

are g iven  from the  nodal  va lues  of gH on t h e  

This g ives  approximately 4 times as many 

H and g H 
gi* 1/2 j i, j* 1/2 

where 

g r i d  i12h by l i n e a r  i n t e r p o l a t i o n .  

equat ions  as the re  are unknowns. A t  every l e v e l  of d i s c r e t i z a t i o n ,  we 

H h  H maintained the r e l a t i o n  between g , U , i.e., g i s  always def ined  on a g r i d  

twice as coarse as the  one f o r  Uh. The g 2  norm of a func t ion  U' 

def ined  on a g r i d  Qh  i s  given by 

A l l  i n t e r p o l a t i o n  w a s  b i l i n e a r  and r e s i d u a l s  were t r a n s f e r r e d  by t h e  9- 

p o i n t  averaging opera tor .  

- -  
16 

1 2 1  

2 4 2  

1 2 1  

. 
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- 

.452 (-4) 
- __ .- __ 1 .114 

_ _ - _ _ _ _ ~ ~  
2 -289 (-1) .322 (-1) 

--__ ~- 
3 .694 (-2) .818 (-2) 

4 .178 (-2) .242 (-2) 

The following tables summarize the numerical experiments. In all the examples 

1-FMG using W(2,l) cycle is shown. The numbers are taken at the end of the 1- 

FMG algorithm. In all the examples, the identification problem is well-posed. 

ExamDle 1 

Level il 

g(x,y) = 1 + x + y 

II residuals n 2  h *  
I I g  - g l 2  

.370 (-5) 

-190 (-6) 

I 3  -324 (-7) .409 (-7) 

- -____ -106 (-4) 1 

2 .328 (-6) 

- _- 

. _. 

.O .o (-9) 

Example 2 V(x,y> = sin(ax) sin(ny) 
g(x,y) = 1 + x + y 

ll residuals11 h *  
Level d IIg - g 12 
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Example 3 

Level  # 

v ( x , y )  = s i n ( n x )  s i n ( n y )  

11 + x x c .5 
11.5 x > .5 g ( x , y >  = 

H r e s i d u a l s  It 

.812(-1) .289( -5) 
~ 

.196( -1) .439(-1) I 

.530( -2) .181(-1) 1 

.153( -2) .603( -2) I 
1 - 

Example 4 

2 Level  i/ I gh - h* I I r e s i d u a l s  It 

.206( -1 ) .237(-5) 

.536(-2) .256(-2) 

-204 (-2) .959( -3) 

.750( -3) .3 14( -4) 
I -- l 4  

i -- 



Determine s(x,y), g(x,y) from observation of V(x,y,t) f(x,y,t) such that the 

following equation holds 

L (g,s) v = f (x, y) E $2 , 0 < t < To. 

In this problem, we used observed data at a few different times. We 

are given together with f. assumed that both V and Vt 
h M Let f2 be defined as in the previous section and r be defined as 

rM = (tn: n=l,...,~ 0 < tn <To) . 

Discretization of V(x,y,t), f(x,y,t), and s(x,y,t) was done on 

that of g(x,y) used QH(H=2h). 

Qh x rM while 

With such a discretization, the total number 

of unknowns i s  
‘1 

2 nL n t -  4 .  

The total number of equations is n2 times the numbers of time observa- 

tions. In our example, five time observations were used. 

In defining coarse grids, we maintained the relation between v,f,s,g as 

on the fine level, i.e., v,f,s use a grid twice as fine as g uses. We 

coarsened in space only, leaving the number of time measurements to be the 

same on all levels. Intergrid transfers were exactly as in the elliptic case 

(sec 4.1) .  The relaxation consists of two steps. The first one was a 

Kaczmarz relaxation in which both The second one was 

a pointwise relaxation of 

( i , j )  E ah were scanned in lexicographic ordering, and at each point s ijh was 

gH and sh were relaxed. 

sh only. In this relaxation, the points 
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changed t o  minimize 

h H h  h h UL (g ,s ) v * - f II. 

The fol lowing t a b l e s  summarize the numerical  r e s u l t s .  Resu l t s  are g iven  

f o r  3-FMG us ing  w(2,2) - cycle .  

v ( x , y , t >  = sin(nx)sin(my) (t+l) 

g(x ,y> = 1 + x + y 

s ( x , y )  = 1. 

I r e s i d u a l s [  h *  
IIS -s  II h *  Level  11 Cycle # IIg -g II 

1 10 .114 8.11 (-5) 3.52 (-5) 
_. -- --- ~- _- I__- 

2 1 2.75 (-2) 1.17 (-2) 4.64 (-3) 

2 2.75 (-2) 5.06 (-3) 4.14 (-3) 

3 2.75 (-2) 2.72 (-3) 3.81 (-3) 

- --- 

4 2.75 (-2) 1.98 (-3) 3.54 (-3) 
- --___. 

3 1 6.81 (-3) 1.96 (-2) 1.50 (-3) 

2 6.79 (-3) 8.75 (-3) 1.38 (-3) 

3 6.78 (-3) 3.95 (-3) 1.29 (-3) 
- ___I_ _ _  . -- ___I_ ~ ______I ~ - - .  I_ - 

4 6.78 (-3) 1.95 (-3) 1.20 (-3) 

4 1 1.77 (-3) 3.30 (-2) 2.41 (-3) 
_____ 

2 1 . 7 1  (-3) 1.98 (-2) 2.58 (-3) 

3 1.70 (-3) 1.20 (-2) 2.67 (-3) 

4 1.69 (-3) 7.96 (-3) 2.56 (-3) 
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~(x,y,t) = s i n ( s x )  s i n ( n y ) ( t + l )  , s ( x , y )  = 1 

Level # 

l+x [ x  < .5 
g(x’y) = 1.5 I X  > .5 

Cycle # h *  ns -S w II residuals II 

8.19 (-2) 4.49 (-5) 1.93 (-5) 

2 1 1.90 (-2) 6.98 (-3) .137 

2 1.90 (-2) 1.01 (-2) .128 

3 1.91 (-2) 1.46 (-2) .119 
- ~~ ____- - -~ r-- 4 1.92 (-2) 1.88 (-2) .111 

__ 
3 1 5.08 (-3) 1.02 (-2) 5.78 (-2) 

- -- 
5.17 (-3) 7.02 (-3) 5.37 (-2) 

3 5.22 (-3) 6.86 (-3) 4.99 (-2) 
__-- 

2 
.- 

-- ___ ~ _ _ _  -- 
4 5.25 (-3) 7.79 (-3) 4.66 (-2) 

- 

4 1 1.43 (-3) 1.68 (-2) 2.29 (-2) 

2 1.44 (-3) 1.01 (-2) 2.17 (-2) 

3 1.45 (-3) 6.83 (-3) 2.06 (-2) 

4 1.46 (-3) 5.59 (-3) 1.97 (-2) 

- --___I__ __ __ - _-_ ____ -. 

-_ - 

4.3 Discussion 

These numerical examples clearly demonstrate the effectiveness of the 

method of discretization as well as the solution process. 
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In the  e l l i p t i c  problem, the c o e f f i c i e n t s  converge in a rate of O(h2) 

in t h e  smooth case. When de r iva t ives  of t h e  c o e f f i c i e n t s  are not  smooth, a 

s lower ra te  is obtained as one would expect.  The mul t ig r id  a lgor i thm so lves  

t h e  problem up t o  t h e  l e v e l  of d i s c r e t i z a t i o n  e r r o r s  in j u s t  - one m u l t i g r i d  

c y c l e  of t h e  type FMG-W(2,1). 
2 In t h e  pa rabo l i c  case, t h e  c o e f f i c i e n t  g(x,y)  shows O(h ) convergence 

(in t he  smooth case), and t h i s  is obtained a f t e r  t h e  f i r s t  cycle .  s ( x , y )  

behaves worse t ak ing  more cyc les  t o  reach t h e  l e v e l  of d i s c r e t i z a t i o n  e r r o r .  

This  can be explained as fol lows:  a change of o rde r  O(h ) in g(x,y)  may l ead  

t o  a change of O(h) in s (x ,y) .  Hence s ( x , y )  may reach convergence only a f t e r  

g (x ,y )  has  converged. It is  poss ib le  t h a t ,  a l though s (x ,y)  has not reached 

convergence, g(x,y)  w i l l  be accu ra t e  up t o  d i s c r e t i z a t i o n  e r r o r s  i f  t h e  e r r o r  

in s ( x , y )  times Vt (x ,y , t )  i s  of t h e  l e v e l  of t runca t ion  e r r o r s .  The 

behavior  of t he  r e s i d u a l s  in examples of Sec t ion  4.2 is not  clear. It goes up 

when going from l e v e l  t h r e e  t o  l eve l  f o u r ,  and i t  seems t h a t  i t  should have 

gone down. 

2 
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